Special Civil Engineer Examination Seismic Principles Test Plan # **Definition of Seismic Principles** **Seismic Principles** is defined as the fundamental principles, tasks and knowledge's underlying those activities involved in the California practice of seismic design, seismic analysis or seismic evaluation of new and existing civil engineering projects such as: - Buildings - Non-building structures - Non-structural components, equipment and lifelines This area of practice is structured into six primary content areas. *The percentage given in parentheses represents the proportion of total test points that will address that test plan area.* - I. Seismic Data and Seismic Design Criteria (10%) - II. Seismic Characteristics of Engineered System (15%) - III. Seismic Forces: Building Structures (28%) - IV. Seismic Forces: Non-Building Structures, Components, and Equipment (12%) - V. Seismic Analysis Procedures (25%) - VI. Seismic Detailing and Construction Quality Control (10%) <u>NOTE</u>: As used throughout this Test Plan, the term **applicable code** refers to the <u>current</u> **adopted** *California Building Code* (i.e., 2016 CBC) including the adopted edition of ASCE 7 (i.e., ASCE 7-10). Steven T. Hiner, MS, SE XVII # I. Seismic Data and Seismic Design Criteria (10% / 6 pts) ### **Professional Activities:** - 1. Practice in accordance to laws, codes and standards governing seismic design - 2. Identify design performance requirements for a project - 3. Determine site-related coefficients - 4. Determine effects of site characteristics on a structure - 5. Determine Seismic Design Category ### Test questions on these professional activities may include one or more of the following: - A. Geologic seismic hazards and geotechnical data that affect design, including liquefaction and site classification (Site Class = A, B, C, D^* , E or F) - B. Site-related seismic coefficients (e.g., mapped MCE_R acceleration parameters S_S & S_I , site coefficients F_a & F_v , site adjusted MCE_R acceleration parameters S_{MS} & S_{MI} , and design acceleration parameters S_{DS} & S_{DI}) - C. Natural period of the structure (T) and the expected period of the seismic ground motion - D. The seismic design philosophy of the applicable code - E. Applicable laws, regulations and codes for civil engineering seismic design and construction - F. Seismic Design Categories (SDC = A, B, C, D, E or F) - G. Building Risk Categories (I, II, III & IV) - H. Seismic importance factors $(I_e \& I_p)$ # II. Seismic Characteristics of Engineered System (15% / 8 pts) ### **Professional Activities:** - 1. Select appropriate seismic force-resisting structural system for new or existing structures - 2. Identify effects of structural characteristics on seismic design/performance - 3. Evaluate vulnerability of structures with previous poor seismic performance - 4. Evaluate post-earthquake structural safety - 5. Determine methods for improving seismic performance of existing structures ### Test questions on these professional activities may include one or more of the following: - A. The different structural systems and their design parameters - B. Limitations of different structural systems - C. Requirements for structures having horizontal irregularities (e.g., torsional response, re-entrant corners, out-of-plane offset) - D. Requirements for structures with vertical irregularities (e.g., vertical discontinuities, offsets, soft stories) - E. Drift and P-Delta effects - F. Effects of ductility and damping on seismic performance - G. Effects of redundancy on seismic performance XVİİİ Steven T. Hiner, MS, SE - H. Anchorage and stability in existing unreinforced masonry (URM) bearing wall buildings - I. Weak connections in pre-cast concrete structures - J. Punching shear failures in cast-in-place (flat slab) concrete structures - K. Diaphragm to wall connection failures in (concrete) tilt-up and masonry buildings - L. Buckling or brittle connections in steel braced frame structures - M. Welded connection failures in steel moment frames - N. Assessment and identification of post-earthquake damage and risk - O. Methods to improve seismic performance and the effects on the existing structures - P. Methods and effects of adding stiffness to protect brittle elements - Q. Methods and effects of improving ductility of brittle elements - R. Methods and effects of strengthening connections in structural elements # III. Seismic Forces: Building Structures (28% / 15 pts) ### **Professional Activities:** - 1. Determine structural characteristics required to calculate seismic design forces - 2. Determine seismic design forces for structures - 3. Perform vertical distribution of seismic forces for structures - 4. Determine seismic diaphragm forces - 5. Determine seismic forces for structural elements ### Test questions on these professional activities may include one or more of the following: - A. Mass and stiffness (W, K, etc.) - B. Methods to determine the structure's fundamental period $(T, T_a, etc.)$ - C. Selection of seismic factors and coefficients required for design $(\rho, R, \Omega_0, C_d, etc.)$ - D. Static force procedures and formulas (ELF or Simplified Procedure, C_s , etc.) - E. Structural system seismic coefficient application $(R, \Omega_0, C_d, etc.)$ - F. Design base shear (V) - G. Vertical force distribution $(F_x, C_{vx}, etc.)$ - H. Design seismic forces on diaphragms (F_{px}) - I. Design seismic forces on structural elements - J. Out-of-plane seismic forces on structural elements (F_p) - K. Design lateral force formulas Steven T. Hiner, MS, SE XİX # IV. Seismic Forces: Non-Building Structures, Components,and Equipment (12% / 7 pts) ### **Professional Activities:** - 1. Determine seismic forces for non-structural building components and equipment - 2. Determine seismic forces for non-building structures ### Test questions on these professional activities may include one or more of the following: - A. Mass and stiffness (W or W_p , K or K_p , etc.) - B. Methods to determine the structure's fundamental period (T or T_p) - C. Selection of seismic factors and coefficients required for design (ρ , R, Ω_0 , C_d , or a_p , R_p , etc.) - D. Static force procedures and formulas - E. Design base shear (V) - F. Application of seismic factors and coefficients for design of non-building structures $(R, \Omega_0 \& C_d)$ - G. Application of seismic factors and coefficients for design of non-structural components and equipment $(a_p \& R_p)$ - H. Design lateral force formulas $(V \text{ or } F_p)$ # V. Seismic Analysis Procedures (25% / 14 pts) ### **Professional Activities:** - 1. Perform analysis of seismic force-resisting systems - 2. Perform the distribution of seismic forces to structural elements - 3. Perform the seismic analysis of diaphragms (e.g., rigid and flexible) ### Test questions on these professional activities may include one or more of the following: - A. Applicable load combinations (SD, LRFD, ASD, E, E_h , E_v , E_m , Q_E , D, L, L_r , S, etc.) - B. Distribution of internal and external forces - C. Application of deflection and drift requirements - D. Diaphragm force distribution to structural elements (e.g., chord forces, drag forces, and diaphragm shear) - E. Methods used to calculate rigidities of structural elements - F. Distribution of seismic forces based on rigidity - G. Assumptions controlling the analysis for rigid diaphragms - H. Methods to determine centers of rigidity and mass (C.R. & C.M.) - I. Torsional moment requirements in rigid diaphragms (e.g., inherent torsion M_t , accidental torsion M_{ta} , accidental eccentricity, etc.) - J. Assumptions controlling the analysis of flexible diaphragms - K. Sub-diaphragm analysis XX Steven T. Hiner, MS, SE # VI. Seismic Detailing and Construction Quality Control (10% / 5 pts) ### **Professional Activities:** - 1. Identify the detailing requirements that are critical for seismic performance (e.g., load path, wall anchorage, chord and collector) - 2. Recognize need for construction quality control of the seismic design aspects of the project (e.g., testing, special inspection and observation requirements) # Test questions on these professional activities may include one or more of the following: - A. Seismic detailing and inherent seismic performance characteristics for steel - B. Seismic detailing and inherent seismic performance characteristics for concrete - C. Seismic detailing and inherent seismic performance characteristics for masonry - D. Seismic detailing and inherent seismic performance characteristics for wood - E. Deformation compatibility requirements for structural and non-structural elements - F. Required building separation and setback - G. Requirements for ties and continuity, collectors and drags - H. Requirements for anchorage of concrete and masonry (structural) walls - I. Seismic materials testing requirements - J. Seismic special inspection requirements - K. Seismic structural observation requirements Steven T. Hiner, MS, SE XXI # California Special Civil P.E. Seismic Principles Examination Statistics | Exam | % Passed | Cut off score | Total Score | Passing % | |------------------|----------|------------------|-------------|-----------| | April 1997 | 46.5% | 126 | 270 | 47% | | October 1997 | 45.9% | 130 | 274 | 47% | | April 1998 | 33.3% | 163 | 294 | 55% | | October 1998 | 44.0% | 139 | 294 | 47% | | April 1999 | 35.8% | 155 | 282 | 55% | | October 1999 | 39.3% | 168 | 289 | 58% | | April 2000 | 37.5% | 127 | 261 | 49% | | October 2000 | 39.4% | 148 | 288 | 51% | | April 2001 | 37.3% | 121 | 268 | 45% | | October 2001 | 40.3% | 150 | 294 | 51% | | April 2002 | 39.6% | 138 | 276 | 50% | | October 2002 | 44.2% | 136 | 287 | 47% | | April 2003 | 37.1% | 155 | 300 | 52% | | October 2003 | 40.4% | 136 | 281 | 48% | | April 2004 | 35.6% | 125 | 263 | 48% | | October 2004 | 38.5% | 154 | 300 | 51% | | April 2005 | 39.8% | 159 | 292 | 54% | | October 2005 | 44.8% | 164 | 295 | 56% | | April 2006 | 37.4% | 152 | 300 | 51% | | October 2006 | 37.2% | 142 | 263 | 54% | | April 2007 | 36.7% | 156 | 292 | 53% | | October 2007 | 39.9% | 177 | 292 | 61% | | April 2008 | 36.3% | 153 | 295 | 52% | | October 2008 | 36.6% | 151 | 285 | 53% | | April 2009 | 39.5% | 25 | 50 | 50% | | October 2009 | 39.2% | Pass / Fail Only | | | | April 2010 | 38.6% | Pass / Fail Only | | | | October 2010 | 38.7% | Pass / Fail Only | | | | April 2011 | 43.0% | Pass / Fail Only | | | | October 2011 | 35.3% | Pass / Fail Only | | | | April 2012 | 40.8% | Pass / Fail Only | | | | October 2012 | 41.0% | Pass / Fail Only | | | | April 2013 | 46.6% | Pass / Fail Only | | | | October 2013 | 44.6% | Pass / Fail Only | | | | Spring 2014 | 48.0% | Pass / Fail Only | | | | Fall 2014 | 41.1% | Pass / Fail Only | | | | Spring 2015 | 51.7% | Pass / Fail Only | | | | Fall 2015 | 41.1% | Pass / Fail Only | | | | Spring 2016 | 53.7% | Pass / Fail Only | | | | Fall 2016 | 43.5% | Pass / Fail Only | | | | Spring 2017 | 54.9% | Pass / Fail Only | | | | Fall 2017 | 43.9% | Pass / Fail Only | | | XXII Steven T. Hiner, MS, SE - 9.27 What is the maximum length-width ratio for the <u>blocked</u> wood structural panel (WSP) horizontal diaphragms (second floor and roof)? - a. 2:1 - b. $2\frac{1}{2}$:1 - c. 3:1 - d. 4:1 - 9.28 Given a structure assigned to *Seismic Design Category* C with a typical *subdiaphragm* span of 20 feet, what would be the minimum required depth of each structural *subdiaphragm*? - a. 10'-0" - b. 8'-0" - c. 6'-8" - d. 5'-0" - 9.29 What is the minimum seismic design force for structural *subdiaphragms* that are part of a flexible diaphragm in SDC = C, D, E or F? - a. $\frac{F_{px}}{L}$ plf - b. $\frac{F_x}{L}$ plf - c. $0.2K_aI_eW_p$ - d. 280 plf Given a single-story wood frame Police Station assigned to *Seismic Design Category* F with wood structural panels used for the <u>flexible</u> roof diaphragm and for the shear walls. The roof diaphragm is to use 19/32" rated sheathing with 10d common nails (3" x 0.148") fastened to 2x nominal framing members, with blocking omitted at intermediate joints. The shear walls are to use 15/32" Structural I sheathing with 10d common nails (3" x 0.148") fastened to 2x nominal framing members. Answer questions 9.30 through 9.33. - 9.30 What is the allowable unit shear for the roof diaphragm with seismic loads <u>perpendicular</u> to the continuous panel joints (CASE 1)? - a. 285 plf - b. 255 plf - c. 215 plf - d. 190 plf - What is the allowable unit shear for a shear wall with 4" o.c. edge nailing, a height (h) of 12'-0'' and a width (b_s) of 8'-6'' resisting seismic loads? - a. 310 plf - b. 380 plf - c. 460 plf - d. 510 plf